FUSE SIZING

LOAD AMOUNT
Resistive 115\%
Single Motor 125\%Multiple Motors off same feed:150% of largest + 100\% of each other
Transformers 100\%
Primary Service 125\%

Table 310-16. Allowable Ampacities of Insulated Conductors Rated 0 through 2000 Volts, 60° to $90^{\circ} \mathrm{C}\left(140^{\circ}\right.$ to $\left.194^{\circ} \mathrm{F}\right)$ Not More Than Three Current-Carrying Conductors in Raceway or Cable or Earth (Directly Buried), Based on Ambient Temperature of $30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$

Size	Temperature Rating of Conductor. See Table 310-13.						Size
AWG kcmil	$\begin{gathered} 60^{\circ} \mathrm{C} \\ \left(140^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 75^{\circ} \mathrm{C} \\ \left(167^{\circ} \mathrm{F}\right) \\ \hline \end{gathered}$	$\begin{gathered} 90^{\circ} \mathrm{C} \\ \left(194^{\circ} \mathrm{F}\right) \\ \hline \end{gathered}$	$\begin{gathered} 60^{\circ} \mathrm{C} \\ \left(140^{\circ} \mathrm{F}\right) \\ \hline \end{gathered}$	$\begin{gathered} 75^{\circ} \mathrm{C} \\ \left(167^{\circ} \mathrm{F}\right) \\ \hline \end{gathered}$	$\begin{gathered} 90^{\circ} \mathrm{C} \\ \left(194^{\circ} \mathrm{F}\right) \\ \hline \end{gathered}$	AWG kcmil
	TYPES TW†, UF \dagger	TYPES FEPW \dagger, RH \dagger, RHW \dagger, THHW \dagger, THW \dagger, THWN \dagger, XHHW \dagger USE†, ZW† \dagger	TYPES TBS, SA SIS, FEP \dagger, FEPB \dagger, MI RHH , RHW-2, THHN \dagger, THHW \dagger, THW-2†, THWN-2†, USE-2, XHH, XHHW \dagger XHHW-2, ZW-2	TYPES TW \dagger, UF \dagger	TYPES RH \dagger, RHW \dagger, THHW \dagger, THW \dagger, THWN \dagger, XHHW \dagger, USE \dagger	TYPES TBS, SA, SIS, THHN \dagger, THHW \dagger, THW-2, THWN-2, RHH \dagger, RHW-2, USE-2, XHH, XHHW, XHHW-2, ZW-2	
	COPPER			ALUMINUM OR COPPER-CLAD ALUMINUM			
18		. . .	14
16	. \cdot	. \cdot	18
14	$20 \dagger$	20†	$25 \dagger$
12	$25 \dagger$	25 \dagger	$30 \dagger$	$20 \dagger$	$20 \dagger$	$25 \dagger$	12
10	30	35 \dagger	40†	25	30†	35†	10
8	40	50	55	30	40	45	8
6	55	65	75	40	50	60	6
4	70	85	95	55	65	75	4
3	85	100	110	65	75	85	3
2	95	115	130	75	90	100	2
1	110	130	150	85	100	115	1
1/0	125	150	170	100	120	135	1/0
2/0	145	175	195	115	135	150	2/0
3/0	165	200	225	130	155	175	3/0
4/0	195	230	260	150	180	205	4/0
250	215	255	290	170	205	230	250
300	240	285	320	190	230	255	300
350	260	310	350	210	250	280	350
400	280	335	380	225	270	305	400
500	320	380	430	260	310	350	500
600	355	420	475	285	340	385	600
700	385	460	520	310	375	420	700
750	400	475	535	320	385	435	750
800	410	490	555	330	395	450	800
900	435	520	585	355	425	480	900
1000	455	545	615	375	445	500	1000
1250	495	590	665	405	485	545	1250
1500	520	625	705	435	520	585	1500
1750	545	650	735	455	545	615	1750
2000	560	665	750	470	560	630	2000

CORRECTION FACTORS

Ambient Temp. ${ }^{\circ} \mathrm{C}$	For ambient temperatures other than $30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$, multiply the allowable ampacities shown above by the appropriate factor shown below.						Ambient Temp. ${ }^{\circ}{ }^{5}$
21-25	1.08	1.05	1.04	1.08	1.05	1.04	70-77
26-30	1.00	1.00	1.00	1.00	1.00	1.00	78-86
31-35	. 91	. 94	. 96	. 91	. 94	. 96	87-95
36-40	. 82	. 88	. 91	. 82	. 88	. 91	96-104
41-45	. 71	. 82	. 87	. 71	. 82	. 87	105-113
46-50	. 58	. 75	. 82	. 58	. 75	. 82	114-122
51-55	. 41	. 67	. 76	. 41	. 67	. 76	123-131
56-60		. 58	. 71		. 58	. 71	132-140
61-70		. 33	. 58		. 33	. 58	141-158
71-80			. 41			. 41	159-176

[^0]Table 310-16. Allowable Ampacities of Insulated Conductors Rated 0 through 2000 Volts, 60° to $90^{\circ} \mathrm{C}\left(140^{\circ}\right.$ to $194^{\circ} \mathrm{F}$) Not More Than Three Current-Carrying Conductors in Raceway or Cable or Earth (Directly Buried), Based on Ambient Temperature of $30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$

Size	Temperature Rating of Conductor. See Table 310-13.						Size
AWG kcmil	$\begin{gathered} 60^{\circ} \mathrm{C} \\ \left(140^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 75^{\circ} \mathrm{C} \\ \left(167^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 90^{\circ} \mathrm{C} \\ \left(194^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 60^{\circ} \mathrm{C} \\ \left(140^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 75^{\circ} \mathrm{C} \\ \left(167^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 90^{\circ} \mathrm{C} \\ \left(194^{\circ} \mathrm{F}\right) \end{gathered}$	AWG kcmil
	TYPES TW \dagger, UF \dagger	TYPES FEPW \dagger, RH \dagger, RHW \dagger, THHW \dagger, THW \dagger, THWN \dagger, XHHW \dagger USE†, ZW†	TYPES TBS, SA SIS, FEP \dagger, FEPB \dagger, MI RHH + , RHW-2, THHN \dagger, THHW \dagger, THW-2 \dagger, THWN-2 \dagger, USE-2, XHH, XHHW \dagger XHHW-2, ZW-2	TYPES TW†, UF \dagger	TYPES RH \dagger, RHW \dagger, THHW \dagger, THW \dagger, THWN \dagger, XHHW \dagger, USE†	TYPES TBS, SA, SIS, THHN \dagger, THHW \dagger, THW-2, THWN-2, RHH \dagger, RHW-2, USE-2, XHH, XHHW, XHHW-2, ZW-2	
	COPPER			ALUMINUM OR COPPER-CLAD ALUMINUM			
18	14
16			18	.	\ldots	. . .	
14	$20 \dagger$	$20 \dagger$	$25 \dagger$	\ldots	. \cdot	.	
12	$25 \dagger$	25 \dagger	30t	$20 \dagger$	$20 \dagger$	25†	12
10	30	35 \dagger	40t	25	$30 \dagger$	$35 \dagger$	10
8	40	50	55	30	40	45	8
6	55	65	75	40	50	60	6
4	70	85	95	55	65	75	4
3	85	100	110	65	75	85	3
2	95	115	130	75	90	100	2
1	110	130	150	85	100	115	1
1/0	125	150	170	100	120	135	1/0
2/0	145	175	195	115	135	150	2/0
3/0	165	200	225	130	155	175	$3 / 0$
4/0	195	230	260	150	180	205	4/0
250	215	255	290			230	250
300	240	285	320	190	230	255	300
350	260	310	350	210	250	280	350
400	280	335	380	225	270	305	400
500	320	380	430	260	310	350	500
600	355	420	475	285	340	385	600
700	385	460	520	310	375	420	700
750	400	475	535	320	385	435	750
800	410	490	555	330	395	450	800
900	435	520	585	355	425	480	900
1000	455	545	615	375	445	500	1000
1250	495	590	665	405	485	545	1250
1500	520	625	705	435	520	585	1500
1750	545	650	735	455	545	615	1750
2000	560	665	750	470	560	630	2000

CORRECTION FACTORS

Ambient Temp. ${ }^{\circ} \mathrm{C}$	For ambient temperatures other than $30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$, multiply the allowable ampacities shown above by the appropriate factor shown below.						Ambient Temp. ${ }^{\circ}{ }^{\circ}$
21-25	1.08	1.05	1.04	1.08	1.05	1.04	70-77
26-30	1.00	1.00	1.00	1.00	1.00	1.00	78-86
31-35	. 91	. 94	. 96	. 91	. 94	. 96	87-95
36-40	. 82	. 88	. 91	. 82	. 88	. 91	96-104
41-45	. 71	. 82	. 87	. 71	. 82	. 87	105-113
46-50	. 58	. 75	. 82	. 58	. 75	. 82	114-122
51-55	. 41	. 67	. 76	. 41	. 67	. 76	123-131
56-60		. 58	. 71		. 58	. 71	132-140
61-70		. 33	. 58		. 33	. 58	141-158
71-80			. 41			.41	159-176

[^1]
the IIsseg hot line

A monthly question-and-answer feature concentrating on actual field problems. Send your questions to the address given. An answer written by a member of the Manufacturers Service Advisory Council will be sent directly to you and then published in the magazine.

Wiring

Q (By Brian Hall, Lewiston, NY) Could you please - help me with a question I have about a 3 -phase, 4 -wire Delta connected transformer (Fig. 1).
L1 to $\mathrm{L} 2=220$ volts; L 1 to $\mathrm{L} 3=220$ volts; L 2 to $\mathrm{L} 3=$ 220 volts; L 2 to $\mathrm{N}=110$ volts; and L 3 to $\mathrm{N}=110$ volts.
I have been informed that the voltage between L1 and N equals 177 volts. Is this correct?
What formula is used to arrive at the figure of 177 volts or whatever voltage is between L1 and N ?
A (By Ray Mullin, Bussmann) Although your diagram shows voltages of 110 voits and 220 volts, I will use the voltages as referenced in Chapter 9 of the National Electrical Code book, namely, 120 volts and 240 volts.
I have marked the phased A, B, and C, and the grounded neutral point as N (Fig. 2).
Voltage from A to $B=240$ volts.
Voltage from B to $C=240$ volts.
Voltage from C to $\mathrm{A}=240$ volts.
When this 3 -phase system is to supply 3 -phase motor loads and $120 / 240$-volt lighting loads, one of the transformers is 'center tapped.' This is a common transformer connection when the major portion of the load is 3 phase, and the smaller portion of the load is lighting.

Voltage from A to $\mathrm{N}=120$ volts.
Voltage from B to $N=120$ volts.
Voltage from Cto $\mathrm{N}=208$ volts.
The voltage C to N is calculated as 1.732 times the 120 - volt reference points. Thus, $120 \times 1.732=208$ volts.
We could also calculate this by taking 240 volts times 86.6%. Thus, $240 \times 0.866=208$ volts. The computation
could also be done with vectors in Fig. 3.
Section 215-8 of the NEC requires that the conductors for this 'high leg' (sometimes called the 'wild leg') be jdentified by using an orange insulated conductor or by tagging the conductor. This readily identifies the wire on which the higher voltage to ground appears.

A 3-phase, 4 -wire Delta transformer bank is usually recognized by the fact that one of the transformers is L_{1}

Fig. 2
larger than the other two transformers. This is because one of the transformers will be supplying 3-phase power loads only. For example, a typical transformer bank might have two 50 kVA transformers and one 100 kVA transformer.

Another 3-phase system is a 3 -phase, 4 -wire, WYE connected transformer bank. Here we have full 120 volts between each phase wire and the neutral, and 208 volts between phase conductors (Fig. 4).

A to $N=120$ volts.
B to $N=120$ volts.
C to $N=120$ volts.
A to $B=208$ volts.
B to $C=208$ volts.
C to $A=208$ volts.
There is no 'high leg' in this system.

Fig. 3

> A to $N=120$ volts B to $N==120$ volts C to $N=120$ volts A to $B=208$ volts B to $C=208$ volts C to $A=208$ volts

Fig. 4

Correct charges

(By Enroch Smalls Jr., Mount Vernon, NY). How C. a can you tell if you've got the correct charge in a system for low, medium, and high temperature refrigeration? I am familiar with charging by head pressure, and a combination of head pressure and amp draw using a charging cylinder. I am also aware that low side pressure will start out high. Then when the box pulls down to temperature, it will be a lower pressure. I thought a technician could just put on gauges and tell right away whether the pressure indicated an overcharge, undercharge, or correct charge.

A.
(By Daniel Kramer P.E., consultant). You have a good question and you have asked it clearly. I hope I can answer it as clearly.

You ask: Can a skilled refrigeration technician put gauges on a system and from the gauge readings alone tell whether the system is overcharge, undercharged or has the correct charge?

The answer is no, not from gauge readings alone. However, if the pressures are reasonable, the sightglass is clear, the suction line cool, the receiver warm, the box or fixture temperature satisfactory, and the cycle times reasonable for the application, then the technician
should not suspect over or undercharge.
But if the running times are long or continuous or the box temperature is too high and the receiver is cool compared with adjacent machines, and the head is unexpectedly high, then even if the sightglass is bubbling, the technician should suspect overcharge or noncondensibles.

Even if the highside pressure is too high, the technician will have to know more to tell whether the cause is overcharge. For instance, high head can also be caused by:

- Inoperative condenser fan (fan loose on shaft, wrong fan, undervoltage on fan motor, bad motor).
- Dirty condenser fins.
- Excessive air temperature (air recirculation from condenser discharge).
- Noncondensibles.
- Restricted capillary tube.
- Excessive suction pressure.

Further, noncondensibles and overcharge generally exhibit exactly the same symptoms.

Even if the lowside pressure is too low, the technician will still have to know more before being able to tell whether the system is overcharged. For instance, low
larger than the other two transformers. This is because one of the transformers will be supplying 3-phase power loads only. For example, a typical transformer bank might have two 50 kVA transformers and one 100 kVA transformer.

Another 3-phase system is a 3 -phase, 4 -wire, WYE connected transformer bank. Here we have full 120 volts between each phase wire and the neutral, and 208 volts between phase conductors (Fig. 4).

A to $N=120$ volts.
B to $N=120$ volts.
C to $N=120$ volts.
A to $B=208$ volts.
B to $C=208$ volts.
C © $A=208$ volts.
There is no 'high leg' in this system.

Fig. 3

A

A to $N=120$ volts B to $N=-120$ volts C to $N=120$ volts A to $B=208$ volts B to $C=208$ volts C to $A=208$ volts

Fig. 4

Correct charges

Q.
(By Enroch Smalls Jr., Mount Vernon, NY). How can you tell if you've got the correct charge in a system for low, medium, and high temperature refrigeration? I am familiar with charging by head pressure, and a combination of head pressure and amp draw using a charging cylinder. I am also aware that low side pressure will start out high. Then when the box pulls down to temperature, it will be a lower pressure. I thought a technician could just put on gauges and tell right away whether the pressure indicated an overcharge, undercharge, or correct charge.

A.
(By Daniel Kramer P.E., consultant). You have a good question and you have asked it clearly. I hope I can answer it as clearly.
You ask: Can a skilled refrigeration technician put gauges on a system and from the gauge readings alone tell whether the system is overcharge, undercharged or has the correct charge?

The answer is no, not from gauge readings alone. However, if the pressures are reasonable, the sightglass is clear, the suction line cool, the receiver warm, the box or fixture temperature satisfactory, and the cycle times reasonable for the application, then the technician
should not suspect over or undercharge.
But if the running times are long or continuous or the box temperature is too high and the receiver is cool compared with adjacent machines, and the head is unexpectedly high, then even if the sightglass is bubbling, the technician should suspect overcharge or noncondensibles.

Even if the highside pressure is too high, the technician will have to know more to tell whether the cause is overcharge. For instance, high head can also be caused by:

- Inoperative condenser fan (fan loose on shaft, wrong fan, undervoltage on fan motor, bad motor).
- Dirty condenser fins.
- Excessive air temperature (air recirculation from condenser discharge).
- Noncondensibles.
- Restricted capillary tube.
- Excessive suction pressure.

Further, noncondensibles and overcharge generally exhibit exactly the same symptoms.
Even if the lowside pressure is too low, the technician will still have to know more before being able to tell whether the system is overcharged. For instance, low

3-Phase current formula

Amperage in each leg calculated using the following formulae: (must know single phase current)

$$
\begin{aligned}
& L_{1}=\sqrt{A^{2}+C^{2}+A C} \\
& L_{2}=\sqrt{A^{2}+B^{2}+A B} \\
& L_{3}=\sqrt{B^{2}+C^{2}+B C}
\end{aligned}
$$

$$
\begin{aligned}
& B=\frac{3000 \mathrm{~N}}{230 \mathrm{~V}}=13.04 \mathrm{~A} \\
& C=\frac{2000 \mathrm{~N}}{230 \mathrm{~V}}=8.696 \mathrm{~A} \\
& \begin{array}{l}
L_{1}=\sqrt{13.044^{2}+8.696^{2}+(3.04)(666} \\
L_{1}=\sqrt{170.04+75.62+113.396}
\end{array} \\
& h_{1}=\sqrt{359.056}=\underline{18.95 \mathrm{~A}}
\end{aligned}
$$

Max. No. of conductors in conduit

Size: $1 / 2{ }^{\prime \prime} \quad 3 / 4 \quad 1 " 1 / 4^{\prime \prime} 11 / 2^{\prime \prime}$
CONDUCTOR SIZE

\#16	11	17	27	46	62
$\# 14$	9	15	25	44	60
$\# 12$	7	12	19	35	47
$\# 10$	5	9	15	26	36
\#8	2	4	7	12	17
$\# 6$					
$\# 4$					

Wire Ampacities
CONDUCTOR SIZE

$\# 16$	10
$\# 14$	15
$\# 12$	20
$\# 10$	30
$\# 8$	40
$\# 6$	55
$\# 4$	70
$\# 3$	85
$\# 2$	95

MDOWEST EQUIPMENT COMPANY

 6555 CORPORATE DRIVE CINCINNATI OHIO 45242PHONE: 513-489-2060 FAX: 513-489-2140

ATHMTIO2

DAVID FOX

<4\%	12	DEACRUTIOM	¢975	\%
ALL	B9C-1	21 AMP IEC CONTACTOR, 9 AMP INDUCTIVE	\$ 15.00	
ALL	B12C-1	21 AMP IEC CONTACTOR, 11 AMP INDUCTIVE	17.00	
ALL	816C-1	21 AMP IEC CONTACTOR, 17 AMP INDUCTIVE	21.00	
ALL	B25c-1	33 AMP IEC CONTACTOR, 28 AMP INDUCTIVE	25.00	
ALL	B30C-1	45 AMP IEC CONTACTOR, 32 AMP INDUCTIVE	40.00	
ALL	B40C. 1	65 AMP IEC CONTACTOR, 40 AMP INDUCTIVE	50.00	
ALL	B50C-1	65 AMP IEC CONTACTOR, 52 AMP INDUCTIVE	65.00	
ALL	B63C. 1	85 AMP IEC CONTACTOR, 65 AMP INDUCTIVE	75.00	
ALL	T25LU_ -	OVERLOAD RELAYS - I THRU 32.0 AMPS	25.00	
ALL	T750U--	OVERLOAD RELAY - 18.0 THRUB0.0 AMPS	40.00	
		NOTE: HIGHER AMP RATING IS FOR RESISTIVE		
		TYPE LOADS. LOWER INDUCTIVE AMP		
		RATING IS FOR MOTOR TYPE LOADS.		
		ALL CONTACTORS COME STANDARD		
		WITH ONE MO AUXILIARY CONTACT.		
	$5271-146$		1300	

The Midwest Equipment Company, Inc.
6555 Corporte Drive Cincinnati, OH 45242

QUOTE
PHONE: (513) 489-2060 FAX: (513) 489-2140

	8410
	WEBER MANUFACTURING CO., INC.
	P.O. BOX 19449
	INDLANAPOLIS, IN 46219
	ATTENTION: DAVID FOX

W,

FROM: RUSS FINERAN
DATE: MAX 7, 1996

The Midwest Equipment Company, Inc.

> 6555 Corporate Drive Cincinnati, OH 45242

PHONE: (513) 489-2060 FAX: (513) 489-2140

QATO. $, \quad, \quad, \quad, \quad$
WEBER MANUFACTURING CO., INC.
PO. BOX 19449
INDIANAPOLIS, IN 46219
ATIENTION: DAVID FOX

Ship To, \quad, \quad WILL ADVISE

FROM: RUSS FINERAN
DATE: APRIL 11, 1996

[^0]: \dagger Unless otherwise specifically permitted elsewhere in this Code, the overcurrent protection for conductor types marked with an obelisk (\dagger) shall not exceed 15 amperes for No. 14, 20 amperes for No. 12, and 30 amperes for No. 10 copper; or 15 amperes for No. 12 and 25 amperes for No. 10 aluminum and copper-clad aluminum after any correction factors for ambient temperature and number of conductors have been applied.

[^1]: fUnless otherwise specifically permitted elsewhere in this code, the overcurrent protection for conductor types marked with an obelisk (\dagger) shall not exceed 15 amperm for No. 14, 20 amperes for No. 12, and 30 amperes for No. 10 copper; or 15 amperes for No. 12 and 25 amperes for No. 10 aluminum and copper-clad aluminum after any correction factors for ambient temperature and number of conductors have been applied.

